If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6x-476=0
a = 1; b = 6; c = -476;
Δ = b2-4ac
Δ = 62-4·1·(-476)
Δ = 1940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1940}=\sqrt{4*485}=\sqrt{4}*\sqrt{485}=2\sqrt{485}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{485}}{2*1}=\frac{-6-2\sqrt{485}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{485}}{2*1}=\frac{-6+2\sqrt{485}}{2} $
| x+18=x*3/4 | | 4x-73x-5=0 | | -8=2/5z | | 0,25+2x-1.25=19-x-5 | | -1=c/2 | | -10=m/5 | | -18=3(3x+1)+6 | | 10-3x+9=13 | | x-2x+2-16/3x+5=3-7/2x | | 5.6=4f | | -18=2(5x+1) | | 3b+2/7=5 | | 3k^2=4 | | 5/6x-5=8 | | 4(5.75-1.25y)+5y=23 | | -5(x-7)=-5x+7 | | 0,25+2x-1.25=3x-9+3x | | -1=4p+14-3p | | 5(x+2)=4x+12 | | 4x+6-5x=2 | | -44=4(2x-3) | | 9x-33=-96 | | 8d-3D+3D-9-2d=0 | | -2x+8=4(x+3)-6(x+2) | | 1.5y+7=0.5y | | -x+9=2(x+2) | | 2(x-3)+2=-2x+20 | | 2p/3-28/3=-10 | | 3p/5-28=-40 | | 5^-10n+1=66.9 | | -9*3^9.2b=-82 | | 2(y+3)-2=10 |